[docs]classAdamW(Optimizer):r"""Implements AdamW algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) maximize (bool, optional): maximize the params based on the objective, instead of minimizing (default: False) foreach (bool, optional): whether foreach implementation of optimizer is used (default: None) capturable (bool, optional): whether this instance is safe to capture in a CUDA graph. Passing True can impair ungraphed performance, so if you don't intend to graph capture this instance, leave it False (default: False) .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """def__init__(self,params,lr=1e-3,betas=(0.9,0.999),eps=1e-8,weight_decay=1e-2,amsgrad=False,*,maximize:bool=False,foreach:Optional[bool]=None,capturable:bool=False):ifnot0.0<=lr:raiseValueError("Invalid learning rate: {}".format(lr))ifnot0.0<=eps:raiseValueError("Invalid epsilon value: {}".format(eps))ifnot0.0<=betas[0]<1.0:raiseValueError("Invalid beta parameter at index 0: {}".format(betas[0]))ifnot0.0<=betas[1]<1.0:raiseValueError("Invalid beta parameter at index 1: {}".format(betas[1]))ifnot0.0<=weight_decay:raiseValueError("Invalid weight_decay value: {}".format(weight_decay))defaults=dict(lr=lr,betas=betas,eps=eps,weight_decay=weight_decay,amsgrad=amsgrad,foreach=foreach,maximize=maximize,capturable=capturable)super(AdamW,self).__init__(params,defaults)def__setstate__(self,state):super().__setstate__(state)forgroupinself.param_groups:group.setdefault('amsgrad',False)group.setdefault('maximize',False)group.setdefault('foreach',None)group.setdefault('capturable',False)state_values=list(self.state.values())step_is_tensor=(len(state_values)!=0)andtorch.is_tensor(state_values[0]['step'])ifnotstep_is_tensor:forsinstate_values:s['step']=torch.tensor(float(s['step']))
[docs]@torch.no_grad()defstep(self,closure=None):"""Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """self._cuda_graph_capture_health_check()loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params_with_grad=[]grads=[]exp_avgs=[]exp_avg_sqs=[]max_exp_avg_sqs=[]state_steps=[]amsgrad=group['amsgrad']beta1,beta2=group['betas']forpingroup['params']:ifp.gradisNone:continueparams_with_grad.append(p)ifp.grad.is_sparse:raiseRuntimeError('AdamW does not support sparse gradients')grads.append(p.grad)state=self.state[p]# State initializationiflen(state)==0:state['step']=torch.zeros((1,),dtype=torch.float,device=p.device) \
ifself.defaults['capturable']elsetorch.tensor(0.)# Exponential moving average of gradient valuesstate['exp_avg']=torch.zeros_like(p,memory_format=torch.preserve_format)# Exponential moving average of squared gradient valuesstate['exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)ifamsgrad:# Maintains max of all exp. moving avg. of sq. grad. valuesstate['max_exp_avg_sq']=torch.zeros_like(p,memory_format=torch.preserve_format)exp_avgs.append(state['exp_avg'])exp_avg_sqs.append(state['exp_avg_sq'])ifamsgrad:max_exp_avg_sqs.append(state['max_exp_avg_sq'])state_steps.append(state['step'])adamw(params_with_grad,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps,amsgrad=amsgrad,beta1=beta1,beta2=beta2,lr=group['lr'],weight_decay=group['weight_decay'],eps=group['eps'],maximize=group['maximize'],foreach=group['foreach'],capturable=group['capturable'])returnloss
defadamw(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627# setting this as kwarg for now as functional API is compiled by torch/distributed/optimforeach:bool=None,capturable:bool=False,*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool):r"""Functional API that performs AdamW algorithm computation. See :class:`~torch.optim.AdamW` for details. """ifnotall([isinstance(t,torch.Tensor)fortinstate_steps]):raiseRuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")ifforeachisNone:# Placeholder for more complex foreach logic to be added when value is not setforeach=Falseifforeachandtorch.jit.is_scripting():raiseRuntimeError('torch.jit.script not supported with foreach optimizers')ifforeachandnottorch.jit.is_scripting():func=_multi_tensor_adamwelse:func=_single_tensor_adamwfunc(params,grads,exp_avgs,exp_avg_sqs,max_exp_avg_sqs,state_steps,amsgrad=amsgrad,beta1=beta1,beta2=beta2,lr=lr,weight_decay=weight_decay,eps=eps,maximize=maximize,capturable=capturable)def_single_tensor_adamw(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool,capturable:bool):fori,paraminenumerate(params):grad=grads[i]ifnotmaximizeelse-grads[i]exp_avg=exp_avgs[i]exp_avg_sq=exp_avg_sqs[i]step_t=state_steps[i]ifcapturable:assertparam.is_cudaandstep_t.is_cuda,"If capturable=True, params and state_steps must be CUDA tensors."# update stepstep_t+=1# Perform stepweight decayparam.mul_(1-lr*weight_decay)# Decay the first and second moment running average coefficientexp_avg.mul_(beta1).add_(grad,alpha=1-beta1)exp_avg_sq.mul_(beta2).addcmul_(grad,grad,value=1-beta2)ifcapturable:step=step_t# 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor# (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")bias_correction1=1-torch.pow(beta1,step)bias_correction2=1-torch.pow(beta2,step)step_size=lr/bias_correction1step_size_neg=step_size.neg()bias_correction2_sqrt=bias_correction2.sqrt()ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowtorch.maximum(max_exp_avg_sqs[i],exp_avg_sq,out=max_exp_avg_sqs[i])# Uses the max. for normalizing running avg. of gradient# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)denom=(max_exp_avg_sqs[i].sqrt()/(bias_correction2_sqrt*step_size_neg)).add_(eps/step_size_neg)else:denom=(exp_avg_sq.sqrt()/(bias_correction2_sqrt*step_size_neg)).add_(eps/step_size_neg)param.addcdiv_(exp_avg,denom)else:step=step_t.item()bias_correction1=1-beta1**stepbias_correction2=1-beta2**stepstep_size=lr/bias_correction1bias_correction2_sqrt=math.sqrt(bias_correction2)ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowtorch.maximum(max_exp_avg_sqs[i],exp_avg_sq,out=max_exp_avg_sqs[i])# Use the max. for normalizing running avg. of gradientdenom=(max_exp_avg_sqs[i].sqrt()/bias_correction2_sqrt).add_(eps)else:denom=(exp_avg_sq.sqrt()/bias_correction2_sqrt).add_(eps)param.addcdiv_(exp_avg,denom,value=-step_size)def_multi_tensor_adamw(params:List[Tensor],grads:List[Tensor],exp_avgs:List[Tensor],exp_avg_sqs:List[Tensor],max_exp_avg_sqs:List[Tensor],state_steps:List[Tensor],*,amsgrad:bool,beta1:float,beta2:float,lr:float,weight_decay:float,eps:float,maximize:bool,capturable:bool):iflen(params)==0:returnifcapturable:assertall(p.is_cudaandstep.is_cudaforp,stepinzip(params,state_steps)), \
"If capturable=True, params and state_steps must be CUDA tensors."ifmaximize:grads=torch._foreach_neg(tuple(grads))# type: ignore[assignment]# update stepstorch._foreach_add_(state_steps,1)# Perform stepweight decaytorch._foreach_mul_(params,1-lr*weight_decay)# Decay the first and second moment running average coefficienttorch._foreach_mul_(exp_avgs,beta1)torch._foreach_add_(exp_avgs,grads,alpha=1-beta1)torch._foreach_mul_(exp_avg_sqs,beta2)torch._foreach_addcmul_(exp_avg_sqs,grads,grads,1-beta2)ifcapturable:# TODO: use foreach_pow if/when foreach_pow is addedbias_correction1=[torch.pow(beta1,step)forstepinstate_steps]bias_correction2=[torch.pow(beta2,step)forstepinstate_steps]# foreach_sub doesn't allow a scalar as the first argtorch._foreach_sub_(bias_correction1,1)torch._foreach_sub_(bias_correction2,1)torch._foreach_neg_(bias_correction1)torch._foreach_neg_(bias_correction2)# foreach_div doesn't allow a scalar as the first argstep_size=torch._foreach_div(bias_correction1,lr)torch._foreach_reciprocal_(step_size)torch._foreach_neg_(step_size)bias_correction2_sqrt=torch._foreach_sqrt(bias_correction2)ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowmax_exp_avg_sqs=torch._foreach_maximum(max_exp_avg_sqs,exp_avg_sqs)# type: ignore[assignment]# Use the max. for normalizing running avg. of gradientmax_exp_avg_sq_sqrt=torch._foreach_sqrt(max_exp_avg_sqs)# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)torch._foreach_div_(max_exp_avg_sq_sqrt,torch._foreach_mul(bias_correction2_sqrt,step_size))eps_over_step_size=torch._foreach_div(step_size,eps)torch._foreach_reciprocal_(eps_over_step_size)denom=torch._foreach_add(max_exp_avg_sq_sqrt,eps_over_step_size)else:exp_avg_sq_sqrt=torch._foreach_sqrt(exp_avg_sqs)torch._foreach_div_(exp_avg_sq_sqrt,torch._foreach_mul(bias_correction2_sqrt,step_size))eps_over_step_size=torch._foreach_div(step_size,eps)torch._foreach_reciprocal_(eps_over_step_size)denom=torch._foreach_add(exp_avg_sq_sqrt,eps_over_step_size)torch._foreach_addcdiv_(params,exp_avgs,denom)else:bias_correction1=[1-beta1**step.item()forstepinstate_steps]bias_correction2=[1-beta2**step.item()forstepinstate_steps]step_size=[(lr/bc)*-1forbcinbias_correction1]bias_correction2_sqrt=[math.sqrt(bc)forbcinbias_correction2]ifamsgrad:# Maintains the maximum of all 2nd moment running avg. till nowmax_exp_avg_sqs=torch._foreach_maximum(max_exp_avg_sqs,exp_avg_sqs)# type: ignore[assignment]# Use the max. for normalizing running avg. of gradientmax_exp_avg_sq_sqrt=torch._foreach_sqrt(max_exp_avg_sqs)torch._foreach_div_(max_exp_avg_sq_sqrt,bias_correction2_sqrt)denom=torch._foreach_add(max_exp_avg_sq_sqrt,eps)else:exp_avg_sq_sqrt=torch._foreach_sqrt(exp_avg_sqs)torch._foreach_div_(exp_avg_sq_sqrt,bias_correction2_sqrt)denom=torch._foreach_add(exp_avg_sq_sqrt,eps)torch._foreach_addcdiv_(params,exp_avgs,denom,step_size)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.